

Milli-o Lab water Applications

มาตรฐานน้ำบริสุทธิ์สำหรับงาน ห้องปฏิบัติการ

> Arpa Suveatvatanakul Senior Sales Specialist, Lab Water Solutions

Common water contaminants

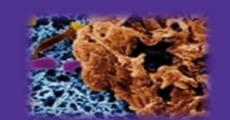
Bacteria: Ralstonia pickettii, Pseudomonas aeruginosa

Bacterial by-products: alkaline phosphatase...

Ions

Ca²⁺, K⁺, Na⁺, Cl⁻, Fe²⁺...

Organics



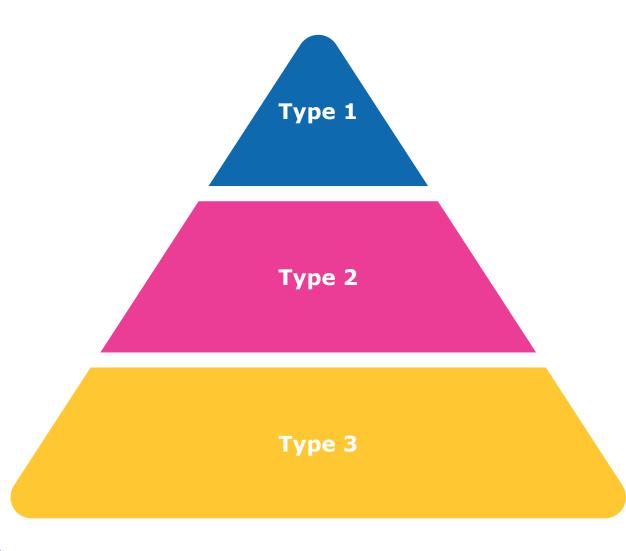
Dissolved biological molecules, VOCs, pesticides, plasticizers...

Particulates

Silica, Pollen, Salt Crystals...

Water Contaminants

Inorganic lons	<u> </u>	Cations	Anions		
		Na+	CI-		
	Co Co Co	Ca+2	HCO-3		
Organics		Natural	Man Made		
		Tannic Acid	Pesticides		
	• • •	Humic Acid	Herbicides		
Particles		Non Dissolved Solid Matter			
(Colloids)		(Small deformable solids with a net negative charge)			
Microorganisms		Bacteria , Algae , N	/licrofungi		
(Endotoxin)		(Lipopolysaccharide fragment of Gram negative bacterial cell wall)			


Measurement of Contaminants

Contaminants	Measurement	Unit
Inorganic Ions	Conductivity (Resistivity)	μs/cm MΩ.cm
Organics	Total Oxidizable Carbon (TOC)	ppm (mg/L), ppb (µg/L)
Particles (Colloids)	Silt Density Index / Fouling Index	Rate of pluggage of 0.45 µm membrane.
Bacteria	Colony count on 0.45 µm Membrane.	cfu/ml

Laboratory water types

- Ultrapure water
- Targeted contaminant removal

<u>Critical applications:</u>
 HPLC, LC-MS, GFAA ,
 ICP-MS, GC-MS,
 Molecular Biology ...

- Pure water
- Consistent water quality
- Standard Applications:

Preparation of buffers, microbiology media, glassware rinsing

- Pure water
- Final quality subject to incoming water quality

Basic lab needs:

 Non-critical rinsing,
 heating baths...

Laboratory Water Purity Specifications

Contaminant	Parameter (units)	Type 1	Type 2	Type 3	
Ions	Resistivity (MΩ-cm)	> 18.0	> 1.0	> 0.05	
	Silica (ppb)	< 10	< 100	< 1000	
Organics	TOC (ppb)	< 10	< 50	< 200	
Particles	particles > 0.2 um (#/ml)	< 1	NA	NA	
Bacteria	Bacteria (cfu/ml)	< 1	< 100	< 1000	
	Endotoxin (EU/ml)	< 0.001	NA	NA	

Laboratory Water Purity Specifications

Regulatory Agencies with Published Standards

- ASTM: American society for Testing and Materials
- ISO: International Organization for Standardization
- CLSI: Clinical and Laboratory Standards Institute
- CAP: College of American Pathologists
- USP: United States Pharmacopoeia
- EP: Euporean Phamacopoeia

ASTM* Standards

	Electrical Conductivity µS/ cm at 298 K (25 °C)	Electrical Resistivity MO-cm at 298 K (25 °C)	pH at 298 K (25 °C)	Total Organic Carbon (TOC), max, μg/L	Sodium, max, μg/L	Chlorides, max, µg/L		Maximum heterotrophic bacteria count, mL	Endotoxin, EU/mL
Type I	0.0555	18	N. A.	50	1	1	3	-	-
Type IA	0.0555	18	N. A.	50	1	1	3	10/1000	< 0.03
Type IB	0.0555	18	N. A.	50	1	1	3	10/100	0.25
Type IC	0.0555	18	N. A.	50	1	1	3	100/10	N. A.
Type II	1.0	1.0	N. A.	50	5	5	3	-	-
Type IIA	1.0	1.0	N. A.	50	5	5	3	10/1000	< 0.03
Type IIB	1.0	1.0	N. A.	50	5	5	3	10/100	0.25
Type IIC	1.0	1.0	N. A.	50	5	5	3	100/10	N. A.
Type III	0.25	4.0	N. A.	200	10	10	500	-	-
Type IIIA	0.25	4.0	N. A.	200	10	10	500	10/1000	< 0.03
Type IIIB	0.25	4.0	N. A.	200	10	10	500	10/100	0.25
Type IIIC	0.25	4.0	N. A.	200	10	10	500	100/10	N. A.
Type IV	5.0	0.2	5.0 to 8.0	No limit	50	50	No limit	-	-
Type IVA	5.0	0.2	5.0 to 8.0	No limit	50	50	No limit	10/1000	< 0.03
Type IVB	5.0	0.2	5.0 to 8.0	No limit	50	50	No limit	10/100	0.25
Type IVC	5.0	0.2	5.0 to 8.0	No limit	50	50	No limit	100/10	N. A.

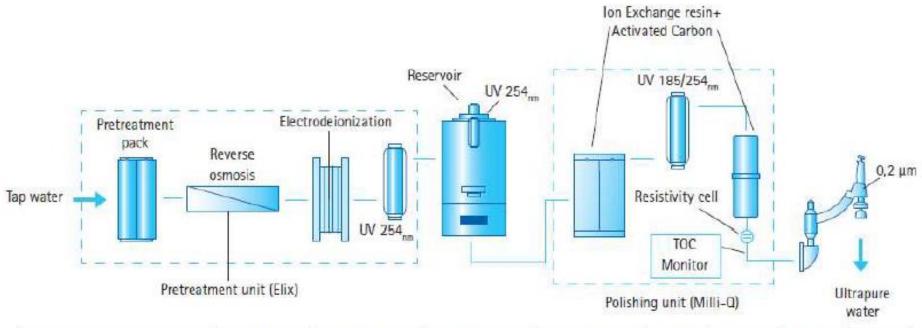
Milli-Q.

ISO® (International Organization for Standardization) - Several industry sectors

ISO 3696 standard

Parameter	Grade 1	Grade 2	Grade 3
pH @ 25 °C	Not applicable	Not applicable	5.0 – 7.5
Conductivity (µS/cm) @ 25 °C, max	0.1	1.0	5.0
Oxidizable substances, Oxygen (0) level (mg/l), max	Not applicable / Specific test to perform	0.08	0.4
254 nm absorbance (1 cm path), (AU), max	0.001	0.01	Not specified
Dry residue (mg/kg) after evaporation at 110 °C	Not applicable / Specific test to perform	1	2
Silica (SiO ₂), (mg/l), max	0.01	0.02	Not specified

US and European Pharmacopoeia


Summary specifications	USP Purified Water EP Purified Water		EP Highly Purified Water		
Source water	Drinkable water accordi	ng to EPA, EU			
Conductivity	< 1.3 μS/cm @ 25 °C*	< 4.3 μS/cm @ 20 °C	< 1.1 μS/cm @ 20 °C		
TOC (ppb of C)	500 **	500 **	500 **		
Bacteria Action level, max	FDA specifications: < 100 cfu/mL	< 100 cfu/mL	< 10 cfu/ 100 mL		
Pyrogens (EU/m L)	NA	NA For dialysis < 0.25	< 0.25		

^{*} Refer to USP 32 <645> or EP Monographies

^{**} Refer to USP 32 <643> or EP Monographies

Optimal Purification Change

	RO	EDI	UV-254	UV-254	IX	AC	UV-185	0.22μm/ (UF)
lons	X	X			X			111
Organics	X					X	Х	
Particles	X		6				G	Х
Bacteria	X		X	X	8		22	Х
Enzymes/endotoxins			3				g 3	(X)

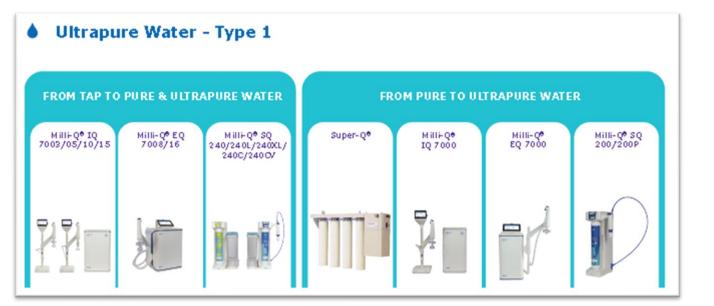
Versatile solutions

Polishing

Ultrapure water (Type 1)

Water for trace elemental analyses

- Microbiology media
- Titration, pH
- **ELISA**
- Kjeldahl
- Washers, autoclaves


- HPLC, LC-MS
- Ion Chromatography
- Elemental analysis (AAS, ICP)
- Molecular Biology

Ultra-trace ICP-MS, GF-AAS



Lab Water Solutions

Examples of type 3 water Applications

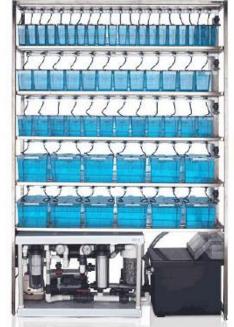
Type 3 - Animal Facilities

academia, pharma

For rodent facilities, avoid:

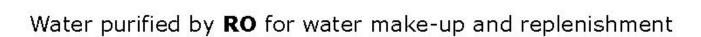
- hardness (clogs water lines)
- particles (clog water lines)
- bacteria (<1 coliform/100 mL), viruses
- potentially harmful or carcinogenic chemicals (heavy metals, chlorination by-products, pesticide residues)
- daily variations in water quality
- high levels of organics (= "food" for bacteria)

Water quality:


Reverse-osmosis, followed by a maintenance level of disinfectant biocide (chlorine, acidification or ozone)

Type 3 - water for fish tanks

academia, pharma



Zebrafish

TECNIPLAST

Type 2 or 3 - Glass-washing final rinse

Water quality selected based on specific applications

Typical glass-washing machine cycle:

- Initial rinse with tap water
- Wash with softened water + detergent.
- Multiple rinses with softened water
- Final rinse(s) with Type 2 or 3 water (sometimes Type 1) to ensure contamination removal

Type 2 or 3 - Autoclaves / sterilizers

Used to sterilize equipment and reagents

- vacuum is applied (trapped air is a very poor medium for achieving sterility)
- 2. superheated steam is applied under high pressure Also used to degrade DEPC (used to remove RNases)

Purified water is required to produce pure superheated steam

- Hard water forms scale deposits on heating elements (reduces heat exchange efficacy)
- Particles and metals may deposit inside the autoclave and on what is being autoclaved
- Bacteria and endotoxins should be avoided

Type 2 (or 3) - stability resting

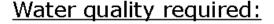
pharma, cosmetics, rood & Bev

Stability testing is a routine procedure performed on medications (Pharma), cosmetics, etc.

Involved at various stages of product development.

- In early stages, accelerated stability testing (at relatively high temperature and/or humidity): "worst case" evaluation to determine degradation products after longterm storage.
- Testing under more gentle conditions (those recommended for long-term shelf storage), and slightly elevated temperature, used to determine a product's shelf life and expiration dates.

Examples of type 2 water applications



Type 2 - weathering chambers

industry (plastic, automotive...), pharma, cosmetics

Accelerated Weathering: test materials stability to outdoor exposure, photo-degradation, fading and photo-chemical reactions.

Used to test many materials / components for industry (automotive industry, paints, plastics, cosmetics ...)

- Type 2 (+ Q-Gard optional)
- Avoid particles, metals, <u>silica</u>: may deposit on the samples or the inside of the instrument, and affect the results

Ci4000 Weather-Ometer®

Type 2 - Histology / Histo-pathology

Hospitals, Medical offices...

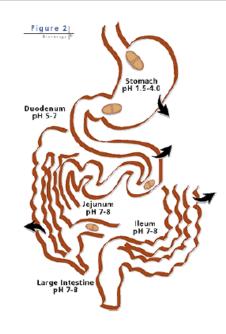
Histology is used to diagnose some cancers (biopsies), infections...

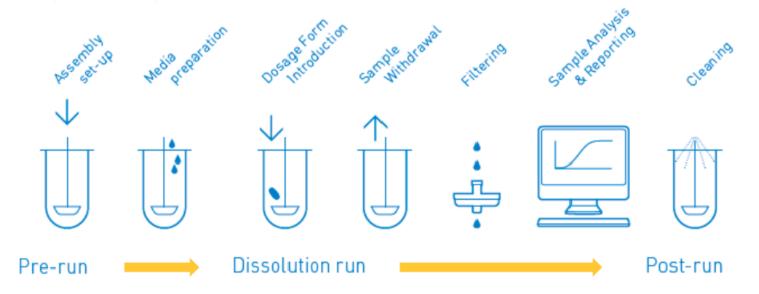
Water is used:

- in stainers, tissue processors, in tissue floatation baths, water baths
- to prepare reagents: buffers, stains, rinsing solutions

Water should not contain:

- particulates, hardness and silica: may adhere to tissue sections; deposit inside stainer and tissue processor
- bacteria: may generate artifacts on slides; may grow inside stainer and tissue processor tubings
- organics: may interfere with the staining process; "food" for bacteria
- chlorine: may have a bleaching effect on stains
- ions (calcium, etc.) and metals: known to interfere with a variety of stains;
 in addition, many stains are very sensitive to pH variations





Type 2 - bissolution resting

In vitro assessment of the dissolution of drugs in the gastro-intestinal tract Drug (tablets) must deliver active ingredient in proper dose, rate and location

Large volumes of water are needed

- for the water bath (if used)
- to prepare the dissolution media
- to rinse the vessels between experiments, to flush the lines of automated systems (if used)

Water may also be needed for the detection

water quality for dissolution resting

Identifying these labs:

Type 2 water is recommended

But Type 1 water will be needed if HPLC (or UHPLC, or LC-MS) is performed for the analysis of the samples!

Biochemical oxygen bemand (Bob)

water facilities, industry, environment

Purified water is used for blanks and dilutions. Various dilution levels of the samples need to be prepared (usually 6 of each) because **tests cannot be repeated!**

The dilution water should:

- Not contain any organics (contributes to BOD)
- Not be toxic to the bacteria (chlorine, copper, mercury)

Blanks

 Most norms require that the oxygen depletion of BOD blanks be < 0.20 mg/L

Article (Direct-Q 3 UV)

Examples of Type 1 water Applications

water in analytical chemistry

ions with varying degrees of sensitivity

- Inductively CoupledPlasma Optical Emission Spectrometry (ICP-OES)
- Inductively Coupled Plasma Mass Spectrometry(ICP-MS)
- Flame Atomic Absorption Spectroscopy(FAAS)
- Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS)
- Ion Chromatography (IC) combined withUV-Vis spectroscopy or electrical conductimetry.

0.24

0.22

0.20

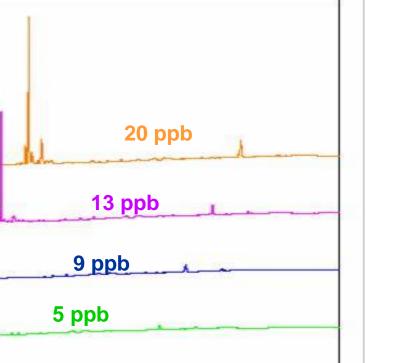
0.18

0.16

0.14

0.10

0.08


0.06

0.04

0.02

5.00

₹ 0.12

30.00

35.00

Tip: Use water with TOC < 5 ppb

Increasing TOC level results in more extraneous peaks

25.00

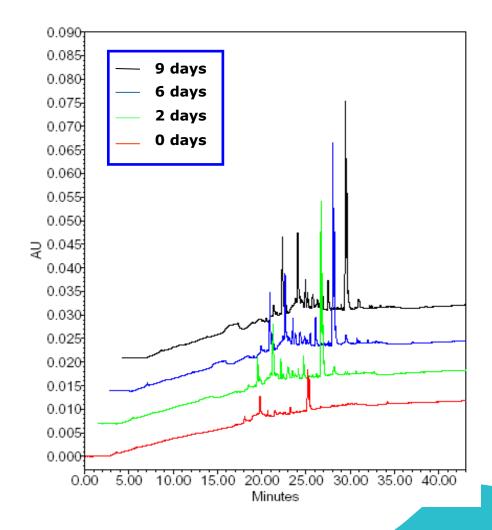
2 ppb

Minutes

20.00

15.00

10.00



Effect of water storage

- Milli-Q® water was stored in a plastic carboy, then HPLC analysis was performed (214 nm)
- Water samples: 60 mL trace enrichment by accumulation on a C₁₈ column at 1 mL/min

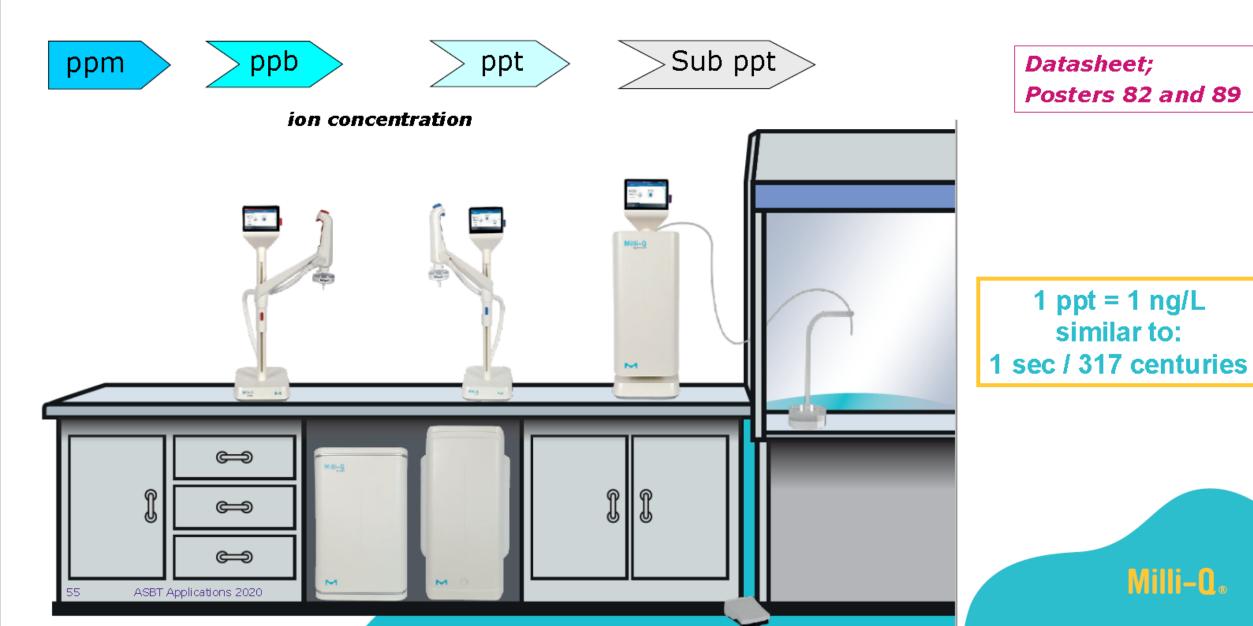
Effects of water contaminants on HPLC and LC-MS

Organics

- Noisy or drifting baselines
- Unknown (ghost) peaks
- "Pollution" of the column (reduced lifetime)

Ions

 Formation of adduct peaks if Na+ or K+ are present (concern for LC-MS)


Particles

- May increase system backpressure (UHPLC)
- Damage pumps and injector

Bacteria

- Behave as particles (back-pressure)
- By-products include organics and ions

Milli-o@ 10 EleMent

the pyramid of quality

3 Qualities of Water, fitting all laboratories' needs

- Ultrapure water
- HPLC-grade
- Molecular biology grade

- Pure water
- DI, RODI,
- Distilled

- Pure water
- RO
- Filtered

Ultrapure /
Type 1 $(R = 18.2 \text{ M}\Omega.\text{cm})$

Pure / Type 2 (~1-15 MΩ.cm)

CLRW $(R > 10M\Omega.cm)$

Pure / Type 3 / SRW $(R < 1 M\Omega.cm)$

- Chromatography
- Cell and molecular biology
- Trace metals analysis
- · Specific removal
- Titration, pH, UV-Vis
- Microbiology (0.22 µm filtered)
- Glassware rinse, weathering devices
- Histology
- · Autoclave feed
- Environmental / stability chambers (not silica sensitive)
- Non-critical rinsing

Thank you!

